Rings of real functions in pointfree topology
نویسندگان
چکیده
منابع مشابه
Rings of Real Functions in Pointfree Topology
This paper deals with the algebra F(L) of real functions of a frame L and its subclasses LSC(L) and USC(L) of, respectively, lower and upper semicontinuous real functions. It is well-known that F(L) is a lattice-ordered ring; this paper presents explicit formulas for its algebraic operations which allow to conclude about their behaviour in LSC(L) and USC(L). As applications, idempotent function...
متن کاملPointfree topology version of image of real-valued continuous functions
Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree version of $C_c(X).$The main aim of this paper is to present t...
متن کاملExtended Real Functions in Pointfree Topology
In pointfree topology, a continuous real function on a frame L is a map L(R) → L from the frame of reals into L. The discussion of continuous real functions with possibly infinite values can be easily brought to pointfree topology by replacing the frame L(R) with the frame of extended reals L ( R ) (i.e. the pointfree counterpart of the extended real line R = R ∪ {±∞}). One can even deal with a...
متن کاملOn The Function Rings of Pointfree Topology
The purpose of this note is to compare the rings of continuous functions, integer-valued or real-valued, in pointfree topology with those in classical topology. To this end, it first characterizes the Boolean frames (= complete Boolean algebras) whose function rings are isomorphic to a classical one and then employs this to exhibit a large class of frames for which the functions rings are not o...
متن کاملCompleteness properties of function rings in pointfree topology
This note establishes that the familiar internal characterizations of the Tychonoff spaces whose rings of continuous real-valued functions are complete, or σ-complete, as lattice ordered rings already hold in the larger setting of pointfree topology. In addition, we prove the corresponding results for rings of integer-valued functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2011
ISSN: 0166-8641
DOI: 10.1016/j.topol.2011.05.040